

2,3,7,8-TCDD in Surface Sediments

Estuarine Dynamics

Study Site

- Mooring Locations
- Tide Gauges

Moorings: ADP's, C-T, Pressure, OBS LISST

Density Driven Circulation

In estuaries heavy salty sea-water slumps underneath the lighter seaward-flowing riverine water. This results in converging near bottom flows that accumulate suspended material near the head of the salt wedge.

Effects of Currents and the Location of a Source of Contaminants

Run1 Steady Flow (10 cm/s) Run2
mean flow 10 cm/s + 75 cm/s tide

Run 3 Converging mean flow + tide

Run 4 Converging mean flow + tide

Schematic of the Bottom Mean Flow

..... may reflect sediment/contaminant transport

Tidal Effects

T_c =Critical threshold for sediment resuspension

Sediment Resuspension = (Uexcess)²

Average backscatter on the flood (blue) & ebb (green) tide

Schematic of Tidally Driven Sediment Transport

Tends to Augment Mean flow sediment transport.

Pattern Enhanced during high river flow

Meteorological Effects

Dec 2000

Meteorologically forced flow-through flushing event in the KVK and Arthur Kill

Two modes of meteorologically forced flows in the Kills

Emptying/filling mode Day 81

Flow through Mode Day 63

Flow pattern following passage of low

...may reflect transport associated with episodic events

Summary and Preliminary Conclusions

- 1) Tidally Mean Flows
 - Persistent 2-layer at Newark Bay 1
 - ·Influenced by meteorological forcing in the Kills
 - Weak in the KVK
- 2) Tidal period motion traps sediment in Newark Bay
 - Enhanced with river discharge
 - Tends to augment mean flow
 - Important in KVK
- 3) Turbidity maximum in Arthur Kill
- 4) Meteorological effects significant in Kills